SYSC 4810: Introduction to Network and Software Security
Course Syllabus
Fall 2019

Carleton University
Department of Systems and Computer Engineering

Instructor
Dr. Jason Jaskolka
Office: Canal Building 6206
Extension: 1873
Email: jason.jaskolka@carleton.ca

Office Hours: TBD and posted on cuLearn

Teaching Assistants (TAs)
TBD and posted on cuLearn

Dates, Times, and Locations

Lectures: Wednesdays 4:05PM–5:25PM
 Fridays 4:05PM–5:25PM

Problem Analysis: Mondays 2:35PM–3:55PM (L1)
 Mondays 4:05PM–5:25PM (L2)

Students should consult cuLearn for the locations of the lectures and problem analysis sessions.

Calendar Description

Network security with coverage of computer security in support of networking concepts. Covers various security issues in data networks at different protocol layers. Routing security, worm attacks, and botnets. Security of new mobile networks and emerging networked paradigms such as social networks and cloud computing.

Prerequisites: Fourth-year status in Communications, Computer Systems or Software Engineering

Students who have not satisfied the prerequisites for this course must either withdraw from the course, or obtain a prerequisite waiver by visiting the Engineering Undergraduate Academic Support Office.

Upon entry into this course, students are expected to have knowledge of: Basic number theory (e.g., prime numbers); Numeral systems (e.g., binary, decimal, hexadecimal); Basic set theory; Computer organization (e.g., execution stacks); TCP/IP networking concepts; Programming skills (in C).

Course Objectives

Concerns related to the security of modern computer systems and networks, and the information that they use, store, and communicate, are becoming more commonplace in our daily lives. Systems today are comprised of broad and heterogeneous communication networks with many interacting software and hardware components that can be spread across a variety of application domains, each with their own security concerns with varying implications and priorities. For example, smartphones, wearable health-monitoring devices, GPS navigation devices, automobiles, energy grid services, and even home appliances like washers and dryers now come with Internet connections by which data from and about the user goes to places where users have little visibility or control. On one hand, users want the convenience and benefits that added connectivity brings, while on the other hand, they are growing increasingly worried about the threat and impact of suffering massive losses of their personal data and information. Computer security brings these two threads together as technology races forward with “smart” products that all too often omit the basic controls that can prevent or limit security attacks and failures.

This course examines the fundamentals of network and software security, and explores the central problems that confront security designers and administrators including defining the threats to computer and network systems, evaluating the relative risks of these threats, and developing effective countermeasures and controls.
The course is intended to cover a broad spectrum of network and software security fundamentals, while striking a balance between theory and practice. It will provide students with the foundation and skills needed to become security-conscious engineers.

Learning Outcomes

Upon completion of this course, students should know and understand:

1. the fundamental concepts, terminologies, principles, and theories of network and software security;
2. the primary aspects of a comprehensive security strategy;
3. the basic principles underlying the main cryptographic concepts and technologies available today, including symmetric and asymmetric encryption, hashing, and digital signatures;
4. security policies (such as authentication, integrity, and confidentiality), as well as protocols to implement such policies;
5. the various types of security threats and attacks on networks and software systems, how they work, and controls for dealing with them;
6. the relevant personnel, legal, and ethical issues related to network and software security.

Upon completion of this course, students should be able to:

7. identify the types of threats and attacks that apply to different categories of computer and network assets;
8. identify suitable countermeasures and security controls for dealing with specific types of threats and attacks;
9. analyze and specify security properties of simple computing systems;
10. implement and use basic security tools to enhance network and software security;
11. develop basic security enhancements in stand-alone applications.

Graduate Attributes

The Canadian Engineering Accreditation Board requires graduates of engineering programs to possess 12 attributes at the time of graduation. Activities related to the learning outcomes listed above are measured throughout the course and are part of the department’s continual improvement process. Graduate attribute measurements will not be taken into consideration in determining a student’s grade in the course. For more information, please visit: https://engineerscanada.ca/.

<table>
<thead>
<tr>
<th>Graduate Attribute</th>
<th>Learning Outcome(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8.S Knowledge Base: Discipline-Specific Concept SCE-5: Software Engineering</td>
<td>1–6</td>
</tr>
<tr>
<td>2.1 Problem Analysis: Problem Definition</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Problem Analysis: Approach to the Problem</td>
<td>8</td>
</tr>
<tr>
<td>4.4 Design: Design solution(s)</td>
<td>9-11</td>
</tr>
<tr>
<td>7.1 Communication Skills: Instructions</td>
<td></td>
</tr>
</tbody>
</table>

Data obtained from exam and quiz questions related to learning outcomes 1-6 will be collected to assess students’ progress towards achieving GA 1.8.S. Data obtained from assignments and exam questions related to learning outcomes 7-11 will be collected to assess students’ progress towards achieving GA 2.1, GA 2.2, GA 3.1, and GA 5.1. Data collected from assignments will be collected to assess students’ progress towards achieving GA 7.1.
Textbook

The following textbook is strongly recommended and is available at the Carleton bookstore.

Note: This course may not always follow the textbook closely.

Additional References & Resources

Throughout this course, the following useful references and resources may also be used:

Course Webpage

The course announcements, course syllabus, lecture slides used in class, assignments, and any material needed or used in the problem analysis or lab sessions, can be found on cuLearn. It is the student’s responsibility to be aware of the information on cuLearn, and to check regularly for announcements.

Email Correspondence

In order to ensure that you receive a timely response to emails that are sent to the instructor or TAs, please include [SYSC 4810] in the Subject, as emails will be filtered using this identifier.

Students are expected to show and maintain a high-level of professionalism in all email correspondence. This means that emails should include a proper salutation and sign-off/signature, and should refrain from using slang, texting abbreviations and acronyms, and emojis/emoticons.

Note that email is not the best medium for technical questions. Technical questions submitted by email will be answered at the beginning of the next lecture.

Evaluation and Grading Scheme

Problem Analysis (0%)

There will be a weekly problem analysis session involving a short ungraded assignment with practice and study questions that are intended to check your understanding of the course material. The problem analysis assignments will be posted on cuLearn one week prior to the problem analysis session in which the solutions will be taken up and discussed. Students are warned that the solutions to the problem analysis assignments will not be posted on cuLearn. The problem analysis assignments form a very important part of this course and your attendance and participation at the problem analysis sessions is expected. Doing the problem analysis assignments (by yourself) and asking questions during the problem analysis sessions is an excellent way for you to learn the course material and prepare for the midterm and final examinations.
Assignments (30%)
There will be three (3) assignments. Each assignment is worth 10% of the final grade. Assignments will be posted on cuLearn and will be due on the following dates:

<table>
<thead>
<tr>
<th>Assignment #</th>
<th>Posted Date</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>September 6, 2019</td>
<td>October 4, 2019</td>
</tr>
<tr>
<td>2</td>
<td>October 4, 2019</td>
<td>November 1, 2019</td>
</tr>
<tr>
<td>3</td>
<td>November 1, 2019</td>
<td>November 29, 2019</td>
</tr>
</tbody>
</table>

The assignment solutions are due by 11:55PM on the due date. Students must submit their assignment solutions on cuLearn. Students are permitted to discuss general aspects of the assignments with other students in the class, but each person should hand in their own work. Students may consult outside sources, such as textbooks, but any use of any source must be documented/cited in the assignment solutions. Late assignments will be graded with a late penalty of 20% of the full grade per day up to 48 hours past the deadline, except for reasons accepted by the Associate Dean’s Office (see Academic Regulations of the University).

The assignments will be graded by the TAs. Any request for regrading must be first directed to the TA that has graded your assignment. If after having talked to the TA you still believe that you deserve a higher grade, then you can contact the instructor. When the instructor regrades an assignment, all of the assignment solutions will be regraded.

Surprise Quizzes (0-5%)
During the lectures, the instructor can give a surprise five to ten minute quiz. There will be up to six (6) surprise quizzes. If the class writes one quiz during the term, it counts for 1% of the final grade. If the class writes more than one quiz, the quiz with the lowest grade does not count, while each of the others count for 1% of the final grade.

Midterm Exam (15%)
There will be one (1) midterm examination. It will be a closed book examination. The midterm exam is worth 15% of the final grade and will take place on Wednesday, October 16, 2019, from 4:05PM–5:25PM (during the lecture time). The location of the midterm exam will be announced on cuLearn in due time. The midterm exam will cover the material from the lectures, problem analyses, assignments, and the required textbook.

Final Exam (50-55%)
The final examination will be scheduled by the Registrar’s office in the usual way. It will be three (3) hours in duration and will cover the material from the lectures, problem analyses, assignments, and the required textbook. The final exam counts for $(55 - \#\text{QuizzesThatCount})\%$ of the final grade. For example, if the class writes 4 quizzes, only 3 quizzes count and the final exam will be worth $(55 - 3) = 52\%$. The final examination is for evaluation purposes only and will not be returned to students. You will be able to make arrangements with the instructor or with the department office to see your marked final examination after the final grades have been made available.

Tentative Course Outline
Note that this course outline is subject to change as circumstances dictate.

- **Part I: Overview of Network and Software Security**
 - Security Concepts: Confidentiality, Integrity, Availability, Threats, Attacks, Assets
 - Fundamental Security Design Principles
 - Attack Surfaces and Attack Trees
 - Security Strategies, Policies, and Implementations: Prevention, Detection, Recovery
• Part II: Computer Security Technology and Principles
 – Cryptography: Symmetric vs. Asymmetric, Hashing, Digital Signatures, Key Management
 – User Authentication: Passwords, Tokens, Biometrics
 – Access Control Principles: Subjects, Objects, Access Rights, Role-Based vs. Attribute-Based
 – Trusted Computing and Multilevel Security
 – Malicious Software: Viruses, Worms, Trojans, Bots, Spam, Phishing, Backdoors, Rootkits
 – Intrusion Detection, Firewalls, and Intrusion Prevention Systems

• Part III: Network Security
 – Internet Security Protocols and Standards: SSL, TLS, HTTPS, IPSec
 – Internet Authentication Applications: Kerberos, Certificates, Public-Key Infrastructure
 – Wireless Network Security and Mobile Device Security

• Part IV: Software and System Security
 – Software Security: Buffer Overflows, Handling Inputs/Outputs, Secure Programming

• Part V: Management Issues
 – Security Management, Risk Assessment, and Threat Modeling
 – Security Controls, Plans, and Procedures
 – Security Evaluation and Assurance
 – Legal and Ethical Aspects

Instructor Expectations, Policies, and Notes

1. A regrading request of an assignment, lab, quiz, or exam will be considered by the instructor only if it is made within the two weeks that follow the return date of the majority of the concerned assignment, lab, quiz, or exam.

2. The instructor reserves the right to assign extra grades for extra work done by willing students. However, the work subject to extra grades will be advertised during the lectures to provide the opportunity to all students.

3. No responsibility for loss of assignments or labs can be assumed by either the instructor or the TAs. Keep copies of your own assignments and labs.

4. Students are responsible for ensuring that their assignments are submitted correctly and without corruption.

5. The lectures will not necessarily follow the order in which the topics are presented in the detailed course outline. Regular class attendance is required.

6. Significant study, reading, and group discussions outside of class are required. Looking at, or only reading the slides that are provided may not be enough to achieve the level of understanding required for the assignments and exams.

7. Students are expected to show professional behaviour. This includes being on-time for lecture, lab, and/or problem analysis sessions, meeting assignment deadlines, and maintaining a suitable level of professionalism in oral and written (email) correspondence with the instructor and TAs.

8. Students that are having difficulty with the course content are expected to seek help early. Students are encouraged to ask questions in class and/or seek help during the instructor’s office hours.

9. Suggestions on how to improve the course and the instructor’s teaching methods are always welcomed.
General Regulations

Attendance: Students are expected to attend all lectures and lab periods. The University requires students to have a conflict-free timetable. For more information, see the current *Undergraduate Calendar, Academic Regulations of the University, Section 2.1.3, Course Selection and Registration* and *Section 2.1.7, Deregistration.*

Health & Safety: Every student should have a copy of the Health and Safety Manual. Students are reminded to consult the Health and Safety Manual should they, at any time have any questions or concerns regarding Health and Safety.

Deferred Term Work: Students who claim illness, injury, or other extraordinary circumstances beyond their control as a reason for missed term work are responsible for immediately informing the instructor and for making alternate arrangements with the instructor. This must occur no later than three (3) working days after the term work was due. For more information, see the current *Undergraduate Calendar, Academic Regulations of the University, Section 4.4, Deferred Term Work.*

Appeal of Grades: The processes for dealing with questions or concerns regarding grades assigned during the term and final grades is described in the *Undergraduate Calendar, Academic Regulations of the University, Section 3.3.4, Informal Appeal of Grade and Section 3.3.5, Formal Appeal of Grade.*

Academic Integrity: Students should be aware of their obligations with regards to academic integrity. Please review the information about academic integrity at: https://carleton.ca/registrar/academic-integrity/. This site also contains a link to the complete Academic Integrity Policy that was approved by the University’s Senate.

Plagiarism: Plagiarism (copying and handing in for credit someone else’s work) is a serious instructional offense that will not be tolerated.

Academic Accommodation: You may need special arrangements to meet your academic obligations during the term. You can visit the Equity Services website to view the policies and to obtain more detailed information on academic accommodation at http://www.carleton.ca/equity/. For an accommodation request, the processes are as follows:

- **Pregnancy Obligation:** Please contact your instructor with any requests for academic accommodation during the first two weeks of class, or as soon as possible after the need for accommodation is known to exist. For more details, visit the Equity Services website.

- **Religious Obligation:** Please contact your instructor with any requests for academic accommodation during the first two weeks of class, or as soon as possible after the need for accommodation is known to exist. For more details, visit the Equity Services website.

- **Academic Accommodations for Students with Disabilities:** The Paul Menton Centre for Students with Disabilities (PMC) provides services to students with Learning Disabilities (LD), psychiatric/mental health disabilities, Attention Deficit Hyperactivity Disorder (ADHD), Autism Spectrum Disorders (ASD), chronic medical conditions, and impairments in mobility, hearing, and vision. If you have a disability requiring academic accommodations in this course, please contact PMC at 613-520-6608 or pmc@carleton.ca for a formal evaluation. If you are already registered with the PMC, contact your PMC coordinator to send me your Letter of Accommodation at the beginning of the term, and no later than two weeks before the first in-class scheduled test or exam requiring accommodation (if applicable). After requesting accommodation from PMC, meet with me to ensure accommodation arrangements are made. Please consult the PMC Dates and Deadlines for the deadline to request accommodations for the formally-scheduled exam (if applicable).
• **Survivors of Sexual Violence**: As a community, Carleton University is committed to maintaining a positive learning, working and living environment where sexual violence will not be tolerated, and where survivors are supported through academic accommodations as per Carleton’s Sexual Violence Policy. For more information about the services available at the university and to obtain information about sexual violence and/or support, visit: https://carleton.ca/sexual-violence-support/.

• **Accommodation for Student Activities**: Carleton University recognizes the substantial benefits, both to the individual student and for the university, that result from a student participating in activities beyond the classroom experience. Reasonable accommodation must be provided to students who compete or perform at the national or international level. Please contact your instructor with any requests for academic accommodation during the first two weeks of class, or as soon as possible after the need for accommodation is known to exist. For more details, see the [Senate Policy on Accommodation for Student Activities](https://www.carleton.ca/policies/academic/).

Copyright on Course Materials

The materials created for this course (including course syllabus, slides, posted notes, labs, project, assignments, quizzes, exams and solutions) are intended for personal use and may not be reproduced or redistributed or posted on any web site without prior written permission from the author(s).